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Abstract— This paper presents a semi-supervised frame-
work for multi-level description learning aiming for robust
and accurate camera relocalization across large perception
variations. Our proposed network, namely DLSSNet, simul-
taneously learns weakly-supervised semantic segmentation and
local feature description in the hierarchy. Therefore, the aug-
mented descriptors, trained in an end-to-end manner, pro-
vide a more stable high-level representation for local feature
dis-ambiguity. To facilitate end-to-end semantic description
learning, the descriptor segmentation module is proposed to
jointly learn semantic descriptors and cluster centers using
standard semantic segmentation loss. We show that our model
can be easily fine-tuned for domain-specific usage without any
further semantic annotations, instead, requiring only 2D-2D
pixel correspondences. Our learned descriptors, trained with
our proposed pipeline, can significantly reduce the number of
mismatches and thus boost the localization performance, which
outperforms state-of-the-art descriptors or localization systems
on the cross-season localization dataset.

I. INTRODUCTION

Long-term visual localization is the problem of estimating
the camera pose of a query image relative to 3D scene
structure across appearance variations due to changes in
time, weather, or seasons [1]. It is an important enabling
module for robotic application domains involving long-term
deployments in outdoor environments and others with highly
variable visual conditions [2]–[5].

Classical approaches to localization rely on the local,
image feature descriptors to establish 2D-3D correspon-
dences for pose estimation [6]–[8]. Continued use of these
approaches requires robust local descriptors sensitive to
structural differences but not to changes in visual condi-
tions. However, traditional feature descriptors are typically
optimized for use when the query and database images are
taken under similar visual conditions, as the emphasis is
on robustness to the viewpoint [9], [10]. Mismatch errors
increase if the localization and mapping stages occur un-
der different visual circumstances. In contrast, data-driven
approaches to feature detection and description are capable
of establishing methods robust to both disturbance sources
[11]–[14]. Metric learning techniques have contributed to
these outcomes [15], since a deep neural network training
process generates keypoint representations adapted to the
data. Unfortunately, generalizing beyond the data remains
problematic.

Another means to relax the sensitivity while preserving
discriminatory power for point plus feature descriptor so-
lutions has been to implement semantics-aided localization
strategies. The introduction of high-level semantic informa-
tion supplements the low-level descriptor information, result-

Fig. 1: Matches and semantics from DLSSNet. DLSSNet extracts
keypoints with multi-level descriptors for image matching across
significant appearance variations due to seasonal changes. Semantic
segmentation is a side output.

ing in fewer mismatches and more robust visual localization.
This multi-level integration is beneficial, however, the in-
creasing complexity of the network creates more annotation
demands and requires attention with regards to how the
layers should be trained due to the coupling. Consequently,
the influence of network structure and learning methods on
performance has not been fully explored. The efficacy of
high-level guidance on top of multi-level description learning
is unclear, meaning that evidence-supported guidance con-
cerning network design for localization is nonexistent. Addi-
tionally, task-specific fine-tuning of semantics or semantics-
augmented description learning has trouble addressing anno-
tation needs or indicating how to reduce human-annotation
demands.

We fill this gap by evaluating multi-level descriptors w
or w/o high-level guidance in the context of long-term
localization. Based on the results, we choose the best-
performed network presented in this paper. In particular,
we show that the semantic segmentation and local feature
description can be simultaneously learnt within the hierarchy
of a single deep network pipeline. A descriptor segmentation
module jointly learns semantic descriptors and cluster means
using a standard segmentation loss. The augmented multi-
level descriptors, trained in an end-to-end manner, provide
a more stable high-level representation for local feature dis-
ambiguation as compared to other architectures.

So that training complexity and data annotation needs
are not limiting factors, we provide a pre-training process
approach using standard semantic segmentation datasets,
after which the network may be fine-tuned using only 2D-2D
matches. The two-part process permits the domain-specific
adaptation of the learnt localization module for addressing
the challenges of long-term localization. Modifications have



been made to facilitate efficient task-specific fine-tuning
without extra semantic annotations. The learnt descriptors
reduce the number of mismatches and thus boost localization
performance. These outcomes are quantified using cross-
season localization benchmarks and shown to outperform
contemporary state-of-the-art baselines.

II. RELATED WORKS
A. Deep Feature Learning

Given that the classical paradigm for visual localization
involved sequential feature detection followed by feature
description, deep learning detect-then-describe pipelines nat-
urally arose. Reflecting a similar sequential nature, detector
networks first generate score maps for keypoint selection
[16]–[18]. Next, small image patches centered at keypoint
locations are cropped and input to descriptor networks to
generate keypoint descriptions [15], [19]–[26]. The networks
are independent of each other and trained that way. Unified
architectures describe sequentially applied networks that can
be jointly trained in an end-to-end manner [27], [28]. Though
simplifying the training process, these unified architectures
preserve network complexity. Importantly, they continue to
process descriptors at the image patch level, which prevents
learning contextual cues outside of the local patches.

For modern deep networks with high parametric degrees
of freedom, it is sensible that both detection and description
could be encoded within the same network and jointly
learnt. This joint design describes a detect-and-describe
deep feature learning approach that operates on full-sized
images as opposed to patches [11]–[14]. Using a single
encoding element improves computational efficiency due to
shared weights. What distinguishes the methods are the self-
supervised learning tactics and detector design. SuperPoint
[11] uses a dual branch decoder with a heatmap keypoint
detector on one of the decoder branches. R2D2 [13] has
branches for repeatability and reliability maps that together
recover keypoints of interest. The idea is to identify points
that will almost always be detected and whose descriptions
will be discriminative. Theoretically, image-wide convolu-
tional structures permit learning of high-level contextual
information, however contextual learning is limited by the
stencil sizes. The learnt features are observed to still have
fairly localized representations of image structure.

D2-Net [12] avoids a separate detection branch and builds
a sequential process to perform keypoint detection directly
from the pixel descriptors. It is more accurately called a
describe-to-detect process since the descriptor outputs influ-
ence the detector. Detections based on feature vector outputs
should induce higher-level feature learning that is less local-
ized in nature. If so, it comes at the price of reduced keypoint
localization accuracy. ASLFeat [14] instead modifies the
detect-and-describe process by outputting multiple keypoint
detector heatmaps at different layers within the network to
recover low-, mid-, and high-level structure. Their fusion
acts like a multi-scale keypoint detection process. Additional
elements in the network provide robustness to image defor-
mation arising from viewpoint changes. What is ultimately

captured at the ”high” level will still be constrained by the
stencils across the layers.

B. Semantics-Aided Localization

One form of higher-level contextual information is se-
mantic scene knowledge. Semantic labels act as a weak
supervisory signal to distinguish between correct and incor-
rect correspondences. A common strategy is to incorporate
semantic labels into the matching stage of localization, where
each 2D-3D match is assigned to a semantic consistency
score [29], [30] to influence the RANSAC sampling for
robust pose estimation. The bottleneck of such methods is
the number of available classes, as the quantity directly
translates to the discriminative power of potential matches.
Self-supervised semantic learning methods that generate fine-
grained segmentation networks overcome this problem [31].

Joint, multi-level descriptors combine the complementary
information from semantics and geometric local features
during the feature learning process. One group of them
[32], [33] directly combines the features from off-the-shell
networks trained on low- or high-level tasks for multi-level
keypoint description. Although the unified frameworks have
been delicately designed for end-to-end training, the fine-
tuning of high-level representation still faces an efficacy
problem due to multi-network multi-task learning needs
[32]. Alternatively, multi-level descriptors concatenated from
different stages of the network improve object detection,
semantic segmentation, and part labeling [34]. Following
this work, a hierarchical metric learning pipeline is pro-
posed [35], and improved [36], to make the multi-level
descriptors trainable end-to-end using simple correspondence
contrastive loss. Other methods try to learn the multi-level
descriptors in conjunction with auxiliary high-level tasks: the
pixel-wise descriptors are extracted and concatenated from
multiple layers of image retrieval network for localization
tasks using merely image-level supervision [37]. Later, point-
wise supervision [8] is incorporated along with the image
correspondences for fine-grained point description learning,
but using single-level descriptions.

III. LEARNING MULTI-LEVEL DESCRIPTION
AND SEMANTIC SEGMENTATION

As illustrated in Fig. 2, our proposed Descriptor Learning
and Semantic Segmentation Network (DLSSNet) is built upon
PSPNet [41] pretained on semantic segmentation tasks. The
feature embeddings from different stages of the network are
first fused into two integrated descriptors (§III-A). Then,
the resultant low- and high-level descriptors are utilized to
accomplish three complementary tasks: low-level detection-
and-description (§III-B), high-level semantic segmentation
(§III-C), and multi-level description (§III-D).

Our network design takes advantage of the inherent hierar-
chy of CNNs to learn semantic and local geometric features
from different layers of a single deep network [34]. Local
geometric features identify low-level structures, such as
corners, edges, etc., for keypoint localization and description.
Contextual features, learned from semantic segmentation
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Fig. 2: DLSSNet architecture Our proposed network consumes a single image as input, which simultaneously predicts low-level keypoint
detection and description, high-level semantic segmentation, and multi-level description within a single network.
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Fig. 3: Sub-modules in DLSSNet: multi-level feature fusion (left)
and descriptor segmentation (right).

tasks, encode the high-level regional information into point
description. The multi-level concatenated descriptors formu-
late a richer visual representation for keypoint matching.

A. Multi-Level Feature Fusion

The main task of our proposed feature fusion module is to
establish a low-level geometric local descriptor and a high-
level semantic descriptor by fusing feature embeddings from
multiple network layers. We first divide deep features ex-
tracted from the bottlenecks (5 layers) and pyramid pooling
module (1 layer) of PSPNet in a tuple format as shown
in Fig. 2. Then, the two groups of feature embeddings are
fed into our proposed feature fusion module for descriptor
formulation. We group feature in a tuple format based on
the observations that (1) state-of-the-art feature learning
networks either truncate deep models after the third blocks
[12] or utilize very shallow networks [11], [13], [14] for
low-level high-resolution local description learning, and (2)
simple fusion of lower-level features into high-level ones
tend to be less effective for semantic segmentation [39].

As illustrated in Fig. 3 (left), our proposed multi-level fea-
ture fusion module takes the multi-level feature embeddings
{φl−1,φl ,φl+1} with different resolutions and channels as
inputs and outputs a fused descriptor d for subsequent tasks.
Channel reduction and size adaption modules first resize the
feature maps to equal channels and same spatial resolution
through individual conv1x1+bn+relu computations and bilin-
ear interpolation, respectively. For computational efficiency,
we implement feature summation, instead of concatenation,
to fuse the generated features into a tensor of 128 channels
at each resolution. The integrated descriptors are finally
mapped into Spherical space for dense description formula-
tion through channel-wise L2-normalization. The fused de-
scriptors capture either geometrical information from bottom
network layers or semantic cues from top ones.

B. Learning Low-Level Detection-and-Description

The low-level description-and-detection module here
builds on D2-Net [12] to jointly learn a descriptor and
keypoint detector using ground-truth point matches from
SfM models. Considering the low-level natures of keypoint
detection, detection-and-description uses low-level descrip-
tors that not only maintain spatial resolution but also learn
local details for accurate keypoint localization.

1) Detection: Given the low-level dense descriptor d ∈
RH×W×C, the local spatial and channel-wise score maps, α

and β ∈RH×W×C, are computed for soft keypoint detection:

α
k
i j =

exp(dk
i j)

∑(i′, j′)∈N (i, j) exp(dk
i′ j′)

, β
k
i j =

exp(dk
i j)

maxk′ exp(dk′
i j )

(1)

where N (i, j) is a set of 9 neighboring pixels around
coordinate (i, j). Finally, the saliency score map s ∈ RH×W

weights the pixel-wise description loss after image-wise L1-
normalization:

si j = γi j
/

∑
(i′, j′)

γi′ j′ , where γi j = max
k

α
k
i jβ

k
i j (2)

2) Learning Detection-and-Description: Given a set of
correspondences C from an image pair (I, I′), the detection-
and-description loss of D2-Net [12], maximizes description
distinctiveness at most repeatable keypoint locations:

Ldl(I, I′) =
1
|C | ∑

c∈C

scs′c
∑k∈C sks′k

M (d,d′) (3)

where s and s′ are detection score maps (2) calculated from
image I and I′, respectively. M (·, ·) is the ranking loss for
description learning given a pair of descriptors d and d′ of
point correspondence.

Following the suggestion from ASLFeat [14], we utilize
the hardest-contrastive loss [40] instead of hardest triplet loss
in D2-Net [12] for better convergence:

M (d,d′) = M (d,d′)++M (d,d′)− (4)

where

M (d,d′)+ = max(0,D(d,d′)−mp)

M (d,d′)− = max(0,mn−min(min
d̄6=d

D(d̄,d′), min
d̄′ 6=d′

D(d, d̄′)))

for D(·, ·) the distance between two descriptors. mp and mn
are the positive and negative margins.



C. Learning High-Level Description Segmentation

Semantic segmentation, as an auxiliary task, is trained at
deeper layers of the network to learn the high-level repre-
sentation. The emphasis is on formulating and stabilizing
the semantic descriptors for domain-specific applications.
As such, no special effort is made to improve semantic
segmentation performance. The uniqueness of our training
is that the descriptor segmentation module jointly learns
semantic descriptors d and cluster means µ in an end-to-
end manner, where the probability distribution of semantic
assignments is computed directly from learnt descriptors. It
can be easily trained using point correspondence loss and
supervised or weakly-supervised semantic segmentation loss.

1) Descriptor segmentation: Inspired by the recent ad-
vance of Deep Embedded Clustering (DEC) [42], a descriptor
segmentation module is proposed to jointly learn the high-
level descriptors d ∈ H×W ×C and cluster centers µ ∈
C×K. It is achieved by mapping the descriptors from the
spherical space to a lower-dimensional feature space that it-
eratively optimizes the semantic assignments s∈H×W ×K.

Specifically, we use the t-distribution as a kernel to mea-
sure the similarity s between descriptor d and kth cluster
centroid µk at (i, j) coordinate:

si j,k =
(1+‖di j,k−µk‖2)−1

∑k′(1+‖di j,k′ −µk′‖2)−1 =
(3−2dT

i j,kµk)
−1

∑k′(3−2dT
i j,k′µk′)−1

(5)
As such, the semantic assignment s can be effi-
ciently computed using standard convolutional operations
conv1x1+softmax as shown in Fig. 3 (right), where the
column weights of conv1x1, after L2-normalization, serve
as cluster centers µ for joint optimization.

2) Learning Semantic Segmentation: Though DEC is de-
signed for unsupervised learning, we advocate for supervised
segmentation since it improves descriptor learning, as long
as the ground-truth labels are available, due to the stability
induced by supervision. To enable task-specific fine-tuning
without additional data annotations, a weakly-supervised
semantic segmentation pipeline is introduced to achieve
efficient domain adaption. The losses for supervised and
weakly-supervised training are detailed here.

The standard cross-entropy loss is chosen to supervise the
model training using ground-truth semantic labels:

Lce(I) =
1
|I| ∑

(i, j)∈I
lT
i j log(si j) (6)

where s stands for probability distribution of semantic assign-
ments s computed from our proposed descriptor segmenta-
tion, and l is the ground-truth semantic labels.

For the cases that the semantic annotation is unavailable,
the 2D-2D correspondences from SfM reconstructions can
be used to enforce labeling consistency between acquired
images as long as one of the images is taken at a similar
condition as pre-trained datasets. As such, the ground-truth
labels can be substituted by one-hot pseudo-label l̂ calculated

from the confidence of semantic assignment s as:

Lpce(I, I′) =
1
|C | ∑

c∈C
l̂T
c log(sc) (7)

The pseudo-labels should be calculated from database images
in localization datasets captured in favorable conditions [43].

3) Learning Point Correspondence: The priority of the
descriptor segmentation module is to learn point-wise se-
mantic descriptors for robust matching, where the semantic
segmentation loss only enforces region-to-region similarity.
To encourage a fine-grained high-level description, the point
correspondence loss are incorporated for fine-grained seman-
tic representation learning:

Lpc(I, I′) =
1
|C | ∑

c∈C
M (dc,d′c)+ . (8)

D. Learning Multi-Level Description

There are several options for merging the low-level geo-
metric and high-level semantic descriptors. One is to com-
bine two descriptors through element-wise summation and
L2-normalization like in the feature fusion module and in
[32]. In the presence of the semantic gap between two types
of features, it is questionable that summation is capable
of preserving the complementary information due to loss
of separability. Feature concatenation is a better option at
the expense of increased computational cost at the matching
stage [34]–[38]. Having the keypoint detection scores (2)
and the concanated descriptors, we train our multi-level
descriptors in an end-to-end manner using the detection-and-
description, hardest-contrastive loss in (3).

E. Training and Fine-Tuning

Fig. 4 depicts the training process, with semantic segmen-
tation pre-training, followed by task-specific fine-tuning with
weak supervision from 2D-2D correspondences. The two
tasks iteratively optimize the description. To facillitate both
training and fine-tuning, the combined loss is implemented:

L = λ
lL l

dl +λ
h(L h

(p)ce +L h
pc)+L m

dl (9)

where the superscripts l, h, and m refer to low-, high-, and
multi-level tasks, and λ (·) are weighting terms.

DLSSNet is pre-trained using semantic segmentation
datasets in conjunction with a self-supervised synthetic
image pairs. The ground-truth point correspondences are
computed along with the randomly transformed image and
semantic labels. Pre-training helps to initialize all three com-
ponents of DLSSNet. A two-step pre-training procedure for
descriptor learning initializes cluster centers without signifi-
cantly altering the high-level representations. First, we fix the
weights of PSPNet and optimize the introduced modules to
convergence. Second, the whole network is jointly optimized.

Using domain adaptation ideas [43], we implement a
weakly-supervised training pipeline to alleviate the demand
for manually created annotations for long-term localization.
The 2D-2D point correspondence from SfM enforces se-
mantic and geometric consistency for domain-specific point
descriptor fine-tuning. The pipeline takes advantage of the
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task-specific fine-tuning are interleaved for semantics-stabilized description learning in the context of long-term localization.

TABLE I: Dataset Information

Dataset Condition Training
Seq

Testing
Seq

#Training
Pairs

#Testing
Pairs

Cityscapes [44] urban all - 5,000 -
KITTI [45] urban 05-08 - 10,000 -

RobotCar [46] urban all - 6,511 -

CMU [47]
urban 6-8 2-5

28,766 46,569suburban 9-13 14-17
park 21-25 18-20

observation that the database images in long-term localiza-
tion datasets are usually captured during favorable condi-
tions. It inherently enables knowledge transfer from easy
to hard. To this end, the cross-entropy loss is optimized
with pseudo-labels inferred from semantic assignments of
database images. Implementing an interleaved training pro-
cedure maintains a stable semantic representation. It prevents
trivial solutions during optimization of the high-level repre-
sentations [43].

IV. EXPERIMENTAL EVALUATION
In this section, the datasets used and implementation

details are first described. Then, we investigate the effects
of key parameters on the design of DLSSNet. Finally, we
benchmark DLSSNet on the task of cross-season localiza-
tion.

A. Datasets

DLSSNet is trained from image pairs gathered from
three different sources. A semantic segmentation dataset
(Cityscapes [44]) with synthetically generated pairs initial-
ize the descriptors and clusters. Later, a visual odometry
dataset (KITTI [45]) uses sequential images as pairs to
refine the network, especially for local feature learning.
Finally, the cross-season localization datasets (RobotCar-
Seasons [46] and Extended CMU-Seasons [47]) with ground-
truth cross-seasonal point correspondence (Cross-Seasons
Correspondence Dataset [43]) fine-tune the whole network
for cross-season localization. Table I summarizes the dataset
information for training and testing. The Extended CMU-
Seasons datasets splitting is based on the availability of
corrrespondences for training, where the slices with ground-
truth correspondence serves as training data and the rest as
testing data.

B. Implementation Details

This section gives implementation details about training
that most affect performance, and about evaluation.

1) Training Details: As a starting point, the PSPNet
[41] (ResNet-101), pre-trained on Cityscapes [44] dataset,
are selected for cross-season point description learning. To
obtain dense ground-truth correspondence, image sequences
are first fed into an SfM pipeline for dense reconstruction.
Ground-truth correspondences are computed by estimating
either 2D-3D or 3D-3D matches between image pairs. The
2D-3D matching strategy is usually applied to scenes with
minor appearance changes, where standard 2D features will
work. The 3D-3D method is used for long-term localiza-
tion datasets, since 2D features are unreliable under large
appearance changes. The ground-truth semantic annotations
are either provided by semantic segmentation datasets or
directly inferred from the network outputs as pseudo-labels
in a weakly supervised pipeline.

As a preprocessing step, image pairs are first standard-
ized to zero-mean unit-norm tensors, then augmented using
random photometric transformations, such as brightness,
contrast, and color noise. During the optimization, the loss
described in (9) is computed from pairs with at least 50 point
matches, and with loss balance factors λ l = λ h = 0.4. The
SGD optimizer is used with a learning rate of 0.1. DLSSNet
is trained on semantic segmentation tasks, CityScapes, with
synthetic pairs for 30 epochs, where the synthetic data is
simple and fast for rendering. Later, it is fine-tuned on
KITTI, RobotCar-Seasons, and Extended CMU-Seasons for
50 epochs each for cross-season specific description learning.

2) Localization pipeline: Evaluation of cross-season lo-
calization uses a two-step pipeline. First, dense SfM models
are generated from COLMAP [48] using the Multi-View
Stereo (MVS) [49] pipeline as a default setting. Then, the
query images are registered to 3D maps (image + depth map)
using customized features. The 2D-3D matches, defined as
mutual nearest neighbors, are used to realize camera poses
using n-point-pose solver [50] inside a RANSAC loop [51].
To compare different deep features we use: (1) provided
ground-truth poses to generate image pairs; and (2) SIFT [52]
features to reconstruct dense depth maps using COLMAP
with MVS option for all reference images.

3) Evaluation protocal: Camera localization is evaluated
using camera pose recall, that is, the percentages of success-
fully localized images using the coarse-to-fine error toler-
ances (0.5m,2deg)/(1m,5deg)/(5m,10deg) for the ablation
study and performance evaluation.



TABLE II: Comparison with State-of-the-Arts

Deep
Descriptor

Extended CMU-Seasons
w/o SSMC [29] w. SSMC [29]

urban suburban park urban suburban park
SuperPoint [11] 89.8 / 91.2 / 92.5 85.9 / 89.7 / 91.5 75.9 / 81.3 / 87.1 91.4 / 92.8 / 95.5 88.3 / 91.2 / 93.2 81.9 / 83.1 / 90.0

D2-Net [12] 91.3 / 94.5 / 96.5 90.5 / 92.8 / 95.5 84.6 / 88.4 / 91.5 91.3 / 94.6 / 96.8 90.8 / 93.0 / 95.7 84.8 / 89.2 / 91.9
R2D2 [13] 92.6 / 93.7 / 95.3 90.8 / 93.2 / 95.2 81.7 / 87.3 / 91.9 93.1 / 94.6 / 96.5 91.4 / 92.8 / 95.7 85.8 / 89.1 / 91.7

ASLFeat [14] 92.7 / 94.4 / 96.5 90.9 / 93.9 / 95.8 85.3 / 88.9 / 91.6 93.2 / 94.9 / 96.6 91.4 / 93.2 / 95.9 86.1 / 90.5 / 92.1
HML* [35] 92.4 / 94.6 / 96.2 91.2 / 93.7 / 95.4 85.3 / 88.8 / 91.2 93.0 / 94.8 / 96.5 91.6 / 92.8 / 95.7 86.8 / 90.4 / 92.1
SAND* [36] 92.9 / 94.6 / 96.7 91.3 / 93.7 / 95.8 85.1 / 89.0 / 91.5 93.1 / 94.7 / 96.7 91.6 / 92.9 / 96.0 86.9 / 90.7 / 92.3

DLSSNet 93.2 / 95.4 / 97.0 92.4 / 94.2 / 96.2 88.4 / 91.6 / 92.5 93.2 / 95.4 / 97.0 92.4 / 94.2 / 96.2 88.4 / 91.6 / 92.5

C. Ablation Study

To understand network design properties, we study the
impact of: (1) different training datasets; (2) multi-level
description fusion; (3) semantic description; and (4) high-
level guidance from semantic segmentation using Extended
CMU-Seasons dataset. Table III lists the ablation study
outcomes.

Unlike state-of-the-art networks for large-scale web image
retrieval, DLSSNet is trained using autonomous driving
datasets for applicability of the semantic annotations. The
table first lists percentages for successfully localized images
when training on subsets of the training corpus. Synthetically
generated image pairs don’t provide satisfying performance
(row 1). Incorporating real image pairs from KITTI se-
quences enables significant improvements at all scenes, while
the fine-tuning at RobotCar-Seasons and Extended CMU-
Seasons give another boost especially for park scenes (rows
2 & 3).

A major claim of this work is that multi-level descriptors
combine the complementary strength of low- and high-level
features for better long-term localization. The second part
of the ablative study analyzes this proposal by comparing
the single- and multi-level descriptors. The evaluation re-
veals that shallower features provide more accurate camera
pose estimation than deeper ones (rows 4 & 5), while the
high-level component, although less discriminative, provides
sufficient complementary information to boost performance
(row 6).

A third claim is that semantic segmentation, as high-
level guidance, helps to learn better descriptors for camera
relocalization. We compare the features learned w & w/o
the auxiliary semantic segmentation task (rows 7 & 8).
High-level descriptors learned from human-defined semantic
segmentation tasks do provide better performance. Compared
to semantic confidence of pre-defined labels, semantic de-
scriptors learns a richer description for robust matching (rows
9 & 10). Similar to the finely-grained segmentation [31], the
learned semantic descriptor enforces a finer data association
during keypoint matching.

D. Comparison with State-of-Arts

DLSSNet is benchmarked on three scenes of the Extended
CMU-Seasons dataset. As suggested1, baselines include deep
local features [11]–[14], as well as ”hypercolumns” [35],

1https://www.visuallocalization.net

TABLE III: Ablative Study

Training
Configuration

Extended CMU-Seasons
Urban Suburban park

Cityscapes 75.5 / 84.2 / 91.7 68.6 / 75.2 / 86.5 62.8 / 69.2 / 76.7
+KITTI 85.3 / 92.5 / 94.5 84.5 / 91.2 / 94.3 73.4 / 82.7 / 88.3

+RC/CMU 93.2 / 95.4 / 97.0 92.4 / 94.2 / 96.2 88.4 / 91.6 / 92.5
Low-lvl 92.7 / 94.6 / 96.5 89.3 / 92.9 / 95.1 83.3 / 86.9 / 89.6
High-lvl 65.3 / 72.2 / 86.3 64.6 / 73.9 / 83.3 60.2 / 68.2 / 75.7
Multi-lvl 93.2 / 95.4 / 97.0 92.4 / 94.2 / 96.2 88.4 / 91.6 / 92.5

w/o SemSeg 92.9 / 94.6 / 96.2 91.2 / 92.7 / 95.4 85.3 / 88.8 / 91.2
w SemSeg 93.2 / 95.4 / 97.0 92.4 / 94.2 / 96.2 88.4 / 91.6 / 92.5

SemSeg label 93.0 / 94.7 / 96.7 91.9 / 92.4 / 95.0 86.3 / 90.7 / 91.3
SemSeg desc 93.2 / 95.4 / 97.0 92.4 / 94.2 / 96.2 88.4 / 91.6 / 92.5

[36]. Also included is the option of a RANSAC-based,
semantics-aided matching approach Semantic Segmentation
Match Consistency (SSMC) [29].

Table II presents the results. As can be seen, DLSSNet
outperforms state-of-the-art descriptors w or w/o the SSMC
option, while being insensitive to the option itself. It vali-
dates the assertion the coupling semantics with local shape
descriptor learning can help to build a richer representation
for accurate camera relocalization. Of the tests, the park
scene is the hardest. The vegetation inherently exhibits more
appearance changes across seasons compared to the urban
and suburban scenes. The improvement for park scenes
further indicates the importance of the high-level description
learning, which is the major contribution of our approach.

V. CONCLUSION

We described a single-network design, DLSSNet, with
explicit semantic and geometric feature learning branches
that extracted feature information from across multiple layers
of the network and fused them according to best design
principles. The intent is to explicitly enable the learning of
multi-level (high and low) representations from the training
imagery. A decoupled then coupled, multi-stage training pro-
cess was described that lowers human annotation demands
yet still enables coupled learning of the multi-level descrip-
tors. The resulting network achieved strong performance on
cross-season localization.

The city-centered semantic data sets used significantly
constrain the training corpus. Therefore, all datasets used
here concentrate on autonomous driving applications either
within or across seasons. Other day-night and cross-weather
localization datasets that do not match the setting cannot be
applied, which is an opportunity for further study.
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