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Methodology

Results – Classifiers (ResNet-50 & ViT)

Background & Goal

Contributions

➢Deep vision models prone to generate 

incorrect predictions when given unfamiliar 

data (Out-of-distribution, OOD) vrelative 

to the training data (In-distribution, ID)

➢We study the OOD detection problem, 

where the goal is to develop a mechanism to 

distinguish between ID and OOD data

➢We aim to jointly reason about class-

agnostic and class-specific information in 

the feature space

➢A new OOD scoring function based on 

Whitened Linear Discriminant Analysis 

(WLDA) in the feature space.

➢A new insight on the efficacy of the 

Whitened Discriminative Residual (WDR) 

Subspace on OOD detection.

➢New state-of-the-art results achieved on the 

large-scale ImagetNet OOD detection 

benchmark, under various settings including 

various visual classifiers (CNN & ViT) and 

contrastive visual encoders (SupCon & 

CLIP)
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➢The separation of class-agnostic and class specific information

➢The importance of data whitening for OOD detection

➢WDR and WD spaces are complementary

Evaluate under FPR95, which is the lower the better

• Fisher Criterion values are lower for 

discriminant orthogonals than 

discriminants

• This suggests that the feature 

projections in WD space are 

maximally separated into classes, and 

are closely clustered in WDR space.

Feature whitening greatly improves the performance 

of feature-distance-based OOD detection, regardless 

of the distance type.

1. Data whitening
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 Covariance matrix for 𝑧 

2. Discriminative & Residual Decomposition 

𝑔(𝑥) = 𝑊𝑇𝑥 ℎ(𝑥) = (𝐼 − 𝑄𝑄𝑇)𝑥

𝑊       Stack of top discriminants in 𝑥 space 

𝑄    Eigenvalues of 𝑊 
3. OOD score
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Results – Contrastive Models (SupCon & CLIP)

𝑔 ⋅   Whitened Discriminative (WD) space projection

ℎ ⋅   Whitened Discriminative Residual (WDR) space projection

• The integrated score 𝑠 ⋅  

performs better than 

individual components 𝑠𝑔 ⋅  

and 𝑠ℎ(⋅).

• Residual space is more 

critical than the discriminant 

space.

• WDiscOOD is applicable for contrastive models as it is a feature 

space method that does not rely on any task head.

• It outperforms other feature space methods for SupCon and CLIP 

model on the ImageNet dataset. 

WDiscOOD achieves superior results compared to a large set of baselines for ImageNet 

classifiers with various backbones including ResNet-50 and Vision Transformer (ViT) 
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